

ECG Interpretation

Key Document code:	WAHT-TP-095		
Key Documents Owner:	Dr T Dawson	Consultant Paediatrician	
Approved by:	Paediatric Quality Improvement meeting		
Date of Approval:	26 th March 2021		
Date of review:	26 th March 2024		
This is the most current document and			
should be used until a revised version is			
in place			

The following guidance is taken from the Partners In Paediatrics (PIP)

Please note that clinical key documents are not designed to be printed, but to be viewed on-line. This is to ensure that the correct and most up to date version is being used. If, in exceptional circumstances, you need to print a copy, please note that the information will only be valid for 24 hours

ECG interpretation 2018-20

ECG INTERPRETATION

- Examine all ECGs for:
- P wave size and axis
- axis of QRS complex
- R-S pattern in chest leads
- P-R, QRS and Q-T intervals
- P and T wave configuration
- size of QRS in chest leads

PAPER SPEED

ECG normally recorded at 25 cm/sec

- 1 mm (1 small square) = 0.04 sec
- 5 mm (1 large square) = 0.2 sec

P WAVE

Reflects atrial activity

Duration shorter than in adults

- infants: 0.04–0.07 sec
- adolescents: 0.06–0.1 sec

Height ≤2.5 mm Varying P wave morphology may indicate wandering atrial pacemaker

Right atrial hypertrophy (RAH)

Increased P wave amplitude in leads II, V1, and V4R

Causes

- Pulmonary hypertension
- Pulmonary stenosis
- Pulmonary atresia
- Tricuspid atresia

Left atrial hypertrophy (LAH)

Biphasic P wave (later depolarization of LA)

Causes

- Mitral valve disease
- LV obstruction and disease

P-R INTERVAL

Atrial depolarization varies with age and rate

Normal range of P-R interval (time in sec)

HEART	P-R INTERVAL (SEC)			
RATE	0–1 month	0–12 months	1–12 yr	12–16 yr
<60	-	-	-	0.1-0.19
60–99	-	-	0.1–0.16	0.1-0.17
100–139	0.08-0.11	0.08-0.12	0.1–0.14	-
140–180	0.08-0.11	0.08-0.12	0.1–0.14	-
>180	0.08-0.09	0.08-0.11	-	-

Prolonged interval

- Normal
- Myocarditis
- Ischaemia
- Drugs
- Hyperkalaemia

Please note that clinical key documents are not designed to be printed, but to be viewed on-line. This is to ensure that the correct and most up to date version is being used. If, in exceptional circumstances, you need to print a copy, please note that the information will only be valid for 24 hours

Short interval

- Wolff-Parkinson-White syndrome
- Lown-Ganong-Levine syndrome
- Glycogen storage disease

Variable interval

- Wandering atrial pacemaker
- Wenckebach phenomenon

QRS COMPLEX

Ventricular activity Duration: 0.06–0.08 sec

Prolonged

- Ventricular hypertrophy
- Bundle branch block
- Electrolyte disturbance
- Metabolic disease
- Drugs (e.g. digoxin)

Normal range of R and S waves (height in mm)

Age	R and S waves (height in mm)					
	V4-R	V1-R	V1-S	V5-R	V6-R	V6-S
Birth	4–12	5–20	0–20	2–20	1–13	0–15
6–12 months	2–7	3–17	1–25	10–28	5–25	0–10
1–10 yr	0–7	2–16	1–12	5–30	5–25	0–7
>10 yr	0–6	1–12	1–25	5–40	5–30	0–5

Q WAVE

Normal in II; III; aVF; V5-6 Depth 2–3 mm

pathological if >4 mm (i.e. septal hypertrophy)

- May be found in other leads in:
- anomalous coronary arteries
- hypertrophic obstructive cardiomyopathy
- transposition of great arteries (with opposite polarity)

Q-T INTERVAL

Inversely proportional to rate

Calculate ratio of Q-T interval to R-R interval

• QTc =
$$\frac{Q-T}{\sqrt{R-R^{T}}}$$

- QTc is usually less than 0.44 s
- prolonged QTc is associated with sudden death: alert consultant immediately

Prolonged interval

- Hypocalcaemia
- Myocarditis
- Jervell-Lange-Nielsen syndrome
- Romano-Ward syndrome
- Head injuries or cerebrovascular episodes
- Diffuse myocardial disease
- Antiarrhythmics

Short interval

- Hypercalcaemia
- Digitalis effect

Please note that clinical key documents are not designed to be printed, but to be viewed on-line. This is to ensure that the correct and most up to date version is being used. If, in exceptional circumstances, you need to print a copy, please note that the information will only be valid for 24 hours

T WAVE

Ventricular repolarization

Normal

- T inversion V4R/V1 (from 3rd day of life until 10 yr)
- Amplitude is 25-30% of R-wave
- Aged <1 yr: V5 ≤11 mm; V6 ≤7 mm
- Aged >1 yr: V5 ≤14 mm; V6 ≤9 mm
- Adolescence reduces amplitude

Peaked T wave

- Hyperkalaemia
- LVH
- Cerebrovascular episode
- Post-MI

Flat T wave

- Normal newborn
- Hypothyroidism
- Hypokalaemia
- Hyper/hypoglycaemia
- Hypocalcaemia
- Peri/myocarditis
- Ischaemia
- Digoxin effect

MEAN QRS AXIS

Vertical plane (limb leads)

Normal axis in vertical plane
Birth +60° to +180°

- Birth +60° to +180° (av +135°)
 Aged 1 yr +10° to +100° (av +60°)
- Aged 10 yr +30° to +90° (av +65°)

Right axis deviation

- Right ventricular hypertrophy (RVH)
- Left posterior hemiblock
- Ostium secundum atrial septal defect (ASD)/right bundle branch block (RBBB)

Left axis deviation

- Left ventricular hypertrophy (LVH)
- Ostium primum ASD (+ RBBB)
- Often in conduction defects

Horizontal plane (anterior chest leads)

Normal

Transition at around V3

Clockwise rotation

• S>R in V4 = RA/RV hypertrophy

Anticlockwise rotation

R>S in V2 = cardiac shift (e.g. pneumothorax)

LEFT VENTRICULAR HYPERTROPHY

Diagnosis

SV1 + RV5 ≥40 mm (30 mm aged <1 yr) +/- prolonged QRS Flat T wave T wave inversion V5-V6 (LV strain) Left bundle branch block Please note that clinical key documents are not designed to be printed, but to be viewed on -line. This is to ensure that the correct and most up to date version is being used. If, in exceptional circumstances, you need to print a copy, please note that the information will only be valid for 24 hours

Causes include

- Aortic stenosis
- Aortic regurgitation
- Hypertension
- Moderate VSD
- Hypertrophic obstructive cardiomyopathy
- Patent ductus arteriosus
- Mitral regurgitation

RIGHT VENTRICULAR HYPERTROPHY

Diagnosis

RAD and RV1 > SV1 (aged >1 yr) SV6 above maximum for age:

- 0–6 months 15 mm
- >6 months
 10 mm
- >12 months
 7 mm
- 10 yr 5 mm
- R waves in V4R/V1 >normal

T wave changes

upright in V1/V4R (aged from 3 days to 10 yr)

Causes include

- Pulmonary stenosis/atresia
- Transposition of great arteries
- Pulmonary regurgitation
- Total anomalous pulmonary drainage
- Tricuspid regurgitation
- Fallot's tetralogy
- Pulmonary hypertension

BIVENT RICULAR HYPERTROPHY

Diagnosis

R + S >50 mm in V3-V4 LVH + bifid R <8 mm in V1

RVH + LV strain Q waves V3-V6 imply septal hypertrophy

TYPICAL ECG ABNORMALITIES

Heart lesion	ECG abnormalities		
PDA	LVH > RVH; LAH		
VSD	LVH > RVH; +/- RBBB; T inv LV leads		
ASD	Secundum	RAD; RBBB; +/- increased P-R; AF	
	Primum	LAD; RBBB; BVH; RAH	
Eisenmenger's	RVH; P pulmonale		
Aortic stenosis	LVH + strain		
Aortic regurgitation	LVH		
Coarctation	Newborn:	RVH	
	Older:	Normal or LVH +/- strain; RBBB	
Mitral regurgitation	LVH		
Pulmonary stenosis	RVH; RAH		
Ebstein's anomaly	Prolonged P-R interval; gross RAH; RBBB		
Fallot's tetralogy	Newborn:	Normal or T +ve V1	
	Older:	RVH; RAH	
Pulmonary atresia	RAH		
Tricuspid atresia	LAD; RAH; LVI	1	